Scientists reveal new super-fast form of computer that 'grows as it computes'
Originally shared by Rob Jongschaap
Scientists reveal new super-fast form of computer that 'grows as it computes'
'Researchers from The University of Manchester have shown it is possible to build a new super-fast form of computer that "grows as it computes".
Professor Ross D King and his team have demonstrated for the first time the feasibility of engineering a nondeterministic universal Turing machine (NUTM), and their research is to be published in the prestigious Journal of the Royal Society Interface.
The theoretical properties of such a computing machine, including its exponential boost in speed over electronic and quantum computers, have been well understood for many years – but the Manchester breakthrough demonstrates that it is actually possible to physically create a NUTM using DNA molecules.
"Imagine a computer is searching a maze and comes to a choice point, one path leading left, the other right," explained Professor King, from Manchester's School of Computer Science. "Electronic computers need to choose which path to follow first.'
https://phys.org/news/2017-03-scientists-reveal-super-fast.html
[1607.08078] Computing exponentially faster: Implementing a nondeterministic universal Turing machine using DNA
'... The theory of computer science is based around Universal Turing Machines (UTMs): abstract machines able to execute all possible algorithms. Modern digital computers are physical embodiments of UTMs. The nondeterministic polynomial (NP) time complexity class of problems is the most significant in computer science, and an efficient (i.e. polynomial P) way to solve such problems would be of profound economic and social importance. By definition nondeterministic UTMs (NUTMs) solve NP complete problems in P time. However, NUTMs have previously been believed to be physically impossible to construct. Thue string rewriting systems are computationally equivalent to UTMs, and are naturally nondeterministic. Here we describe the physical design for a NUTM that implements a universal Thue system. The design exploits the ability of DNA to replicate to execute an exponential number of computational paths in P time. Each Thue rewriting step is embodied in a DNA edit implemented using a novel combination of polymerase chain reactions and site-directed mutagenesis. We demonstrate that this design works using both computational modelling and in vitro molecular biology experimentation. The current design has limitations, such as restricted error-correction. However, it opens up the prospect of engineering NUTM based computers able to outperform all standard computers on important practical problems.
...'
https://arxiv.org/abs/1607.08078
https://phys.org/news/2017-03-scientists-reveal-super-fast.html
Scientists reveal new super-fast form of computer that 'grows as it computes'
'Researchers from The University of Manchester have shown it is possible to build a new super-fast form of computer that "grows as it computes".
Professor Ross D King and his team have demonstrated for the first time the feasibility of engineering a nondeterministic universal Turing machine (NUTM), and their research is to be published in the prestigious Journal of the Royal Society Interface.
The theoretical properties of such a computing machine, including its exponential boost in speed over electronic and quantum computers, have been well understood for many years – but the Manchester breakthrough demonstrates that it is actually possible to physically create a NUTM using DNA molecules.
"Imagine a computer is searching a maze and comes to a choice point, one path leading left, the other right," explained Professor King, from Manchester's School of Computer Science. "Electronic computers need to choose which path to follow first.'
https://phys.org/news/2017-03-scientists-reveal-super-fast.html
[1607.08078] Computing exponentially faster: Implementing a nondeterministic universal Turing machine using DNA
'... The theory of computer science is based around Universal Turing Machines (UTMs): abstract machines able to execute all possible algorithms. Modern digital computers are physical embodiments of UTMs. The nondeterministic polynomial (NP) time complexity class of problems is the most significant in computer science, and an efficient (i.e. polynomial P) way to solve such problems would be of profound economic and social importance. By definition nondeterministic UTMs (NUTMs) solve NP complete problems in P time. However, NUTMs have previously been believed to be physically impossible to construct. Thue string rewriting systems are computationally equivalent to UTMs, and are naturally nondeterministic. Here we describe the physical design for a NUTM that implements a universal Thue system. The design exploits the ability of DNA to replicate to execute an exponential number of computational paths in P time. Each Thue rewriting step is embodied in a DNA edit implemented using a novel combination of polymerase chain reactions and site-directed mutagenesis. We demonstrate that this design works using both computational modelling and in vitro molecular biology experimentation. The current design has limitations, such as restricted error-correction. However, it opens up the prospect of engineering NUTM based computers able to outperform all standard computers on important practical problems.
...'
https://arxiv.org/abs/1607.08078
https://phys.org/news/2017-03-scientists-reveal-super-fast.html
Comments
Post a Comment